

Deliverable D4.3 Framework and standards for data interoperability - version 1

Work Package 4 Pilots, data and campaigns Version: Final

Deliverable Overview

This deliverable represents the first version of the EDIAQI "Framework and standards for data interoperability" and provides a list of standards and technical specifications to implement a common interoperability approach and related technical solutions. The aim is to guarantee that EDIAQI data collected from pilots will be shared and made accessible through adequate standards for interoperability.

Additional Information

Type: R – Document, report Dissemination Level: PU – Public Official Submission Date: 30th of November 2023 Actual Submission Date: 15th of December 2023* *This delay was notified and agreed upon with the Project officer.

Disclaimer

This document contains material, which is the copyright of certain EDIAQI partners, and may not be reproduced or copied without permission. All EDIAQI consortium partners have agreed to the full publication of this document if not declared "Confidential". The commercial use of any information contained in this document may require a license from the proprietor of that information. The reproduction of this document or of parts of it requires an agreement with the proprietor of that information.

Document Revision History

Version	Date	Description	Partners
V0.1	8 th November 2023	First draft	DEDA
V0.2	20 th November 2023	Initial contributions	DEDA
V0.3	21 st November 2023	Revision	DEDA
V0.4	23 rd November 2023	Update (section 3)	TROPOS
V0.5	28 th November 2023	Added new chapter 5 (+ minor edits)	DEDA
V0.6	5 th December 2023	Update (section 3)	DEDA
V0.7	7 th December 2023	Check and links to EIONET and ECHA vocabularies	LAS, UNIMOL
V0.8	11 th December 2023	Minor updates (IDs observed properties in chapter 3)	DEDA
V0.9	12 th December 2023	Final draft version	DEDA
V1.0	13 th December 2023	Version 1.0 for submission	DEDA
V1.1	14 th December 2023	Final quality check	LC
V1.2	15 th December 2023	Response to revisions	DEDA
Final	15 th December 2023	Final version	LC

Authors and Reviewers

Authors

- Piergiorgio Cipriano (DEDA)
- Giulia Degli Esposti (DEDA)
- Martina Forconi (DEDA)
- Beatrice Olivari (DEDA)
- Sebastian Duesing (TROPOS)
- Ivan Notardonato (UNIMOL)
- Alessandro Battaglia (LAS)

Reviewers

- Liina Tonisson (TROPOS)
- Tomislav Cernava (TU Graz)
- Heimo Gursch (KNOW)

Statement of Originality

This deliverable contains original unpublished work except where clearly indicated otherwise. Acknowledgement of previously published material and of the work of others has been made through appropriate citation, quotation or both.

Table of Contents

1.	Execu	tive Summary	11
2.	Introd	uction	13
	2.1 Ratio	nale	13
	2.2 Delive	erable objectives	13
3.	Semai	ntic interoperability	
	3.1 Data	parameters	15
	3.2 Air Q	uality Data	17
	3.3 Auxili	ary Data	25
4.	Techn	ical interoperability	29
	4.1 Stand	ards	29
	4.1.1	SensorThings API	
	4.1.2	Web Map Service interface (ISO19128)	
	4.1.3	Web Feature Service interface (ISO19142)	
	4.1.4	CityGML	40
	4.2 Refer	ence open-source software solutions	41
	4.2.1	FROST (FRaunhofer Opensource SensorThings-Server)	42
	4.2.2	PostgreSQL / PostGIS	43
	4.2.3	Spatial server implementing WMS and WFS standard	43
	4.2.4	QGIS and plugin SensorThings API	44
	4.2.5	3DCityDB + QGIS plugin 3DCityDB Tool	44
5.	. Марр	ing EDIAQI concepts towards standard data models	46
	5.1 STA d	ata model	46
	5.1.1	Things	49
	5.1.2	Locations	51
	5.1.3	FeatureOfInterest	55
	5.1.4	Sensors	61
	5.1.5	ObservedProperties	64
	5.1.6	Observations	65

	5.1.7	DataStreams	66
5	.2 Exam	ples of 'insert' operations	68
	5.2.1	Step 1. Create a Thing entity	69
	5.2.2	Step 2. Create a Location entity	69
	5.2.3	Step 3. Create a Sensor entity	70
	5.2.4	Step 4. Create an Observed Property entity	70
	5.2.5	Step 5. Create a FeatureOfInterest entity	71
	5.2.6	Step 6. Create a Datastream entity	71
	5.2.7	Step 7. Create an Observation entity	71
5	.3 0	Other standard data models to be considered	73
	5.3.1	CityGML "Building" class	73
	5.3.2	INSPIRE Directive "Building" data theme	73
6.	Activi	ity plan M12 – M24	76
7.	Anne	xes	79
7	.1 Anne	ex 1 – EDIAQI Webinar Training Sessions	79
	7.1.1 S	ession I	80
	7.1.2 S	ession II	81
	7.1.3 S	ession III	82
	7.1.4 S	ession IV	83

List of Figures

Figure 1 - Entities (classes) of the SensorThings data model	32
Figure 2 - Level Of Details (LOD) of CityGML	41
Figure 3 - Radiello passive sampler	50
Figure 4 - NetPID monitoring unit	50
Figure 5 - Location of the Thing corresponding to building address (see it on GoogleMaps)	55
Figure 6 - Exact location of the Thing (see it on GoogleMaps)	55
Figure 7 - Example of FeatureOfInterest corresponding to a single room	60
Figure 8 - Sensorion SPS30 for PM2.5	63
Figure 9 - MH-410D NDIR Infrared CO2	63
Figure 10 - Simplified UML Class Diagram for "Building" in CityGML	73
Figure 11 - Overview of the Building Base in INSPIRE Technical Guidelines (TG)	74
Figure 12 - CityGML LoD2, LoD3 and LoD4 in INSPIRE "Buildings" TG	75

List of Tables

Table 1 Indoor air quality parameters measured with sensorics 17
Table 2 Environmental conditions recorded by sensorics 19
Table 3 Outdoor air quality parameters measured by sensorics
Table 4 Additional indoor air quality parameters
Table 5 Chemical components of indoor air
Table 6 Auxiliary environmental conditions 25
Table 7 Auxiliary occupancy parameters 26
Table 8 Auxiliary building parameters 26
Table 9 Technical details for sensor data streaming services - client
Table 10 Technical details for sensor data streaming services - server
Table 11 Technical details for web map services - client
Table 12 Technical details for Map Services - server
Table 13 Technical details for Map Services - interface
Table 14 Technical details for Download Services - client
Table 15 Technical details for Download Services – server
Table 16 Technical details for Download Services - interface 39
Table 17 Mapping EDIAQI data towards STA data model: "Things" entity
Table 18 Mapping EDIAQI data towards STA data model: "Locations" entity
Table 19 Mapping EDIAQI data towards STA data model: "FeatureOfInterest" entity 56
Table 20 Mapping EDIAQI data towards STA data model: "Sensors" entity
Table 21 Mapping EDIAQI data towards STA data model: "ObservedProperties" entity 64
Table 22 Mapping EDIAQI data towards STA data model: "Observations" entity65
Table 23 Mapping EDIAQI data towards STA data model: "DataStreams" entity
Table 24 Sensor Things API - Guidelines available related to integrity constraints
Table 25 General timeline to deploy, configure and test software components for each
EDIAQI pilot site77
Table 26 Detailed plan for semantic interoperability 78

List of Terms and Abbreviations

Abbreviation	Description
6LowPAN	IPv6 over Low-Power Wireless Personal Area Networks
ANT	Institute of Anthropological Research
ΑΡΙ	Application Protocol Interface
AQ	Air Quality
CAS	Chemical Abstracts Service
СоАР	Constrained Application Protocol
CEN	Comité Européen de Normalisation
CQL	Common Query Language
CRS	Coordinate Reference System
CSV	Comma Separated Values
EC	European Commission
ECHA	European Chemical Agency
EIONET	European Environment Information and Observation Network
FROST	FRaunhofer Opensource SensorThings
FTP	File Transfer Protocol
GEMET	GEneral Multilingual Environmental Thesaurus
GML	Geography Markup Language
HTTP(S)	Hypertext Transfer Protocol (Secure)
INSPIRE	Infrastructure for Spatial Information in Europe
IAQ	Indoor Air Quality
ΙΟΤ	Internet Of Things
IPChem	Information Platform for Chemical Monitoring
ISO	International Organization for Standardization
JPEG	Joint Photographic Experts Group
JSON	JavaScript Object Notation
KML	Keyhole Markup Language
КVР	Key Value Pair

LOD	Level Of Details
MQTT	MQ Telemetry Transport
OGC	Open Geospatial Consortium
OWS	OGC Web Services
PDF	Portable
PNG	Portable Document Format
REST	Representational state transfer
RDBMS	Relational Database Management System
SensorML	Sensor Markup Language
SLD	Styled Layer Descriptor
SQL	Structured Query Language
SSN	Semantic Sensor Network
STA	SensorThings API
URI	Uniform Resource Identifier
URL	Uniform Resource Locator
W3C	World Wide Web Consortium
WGS84	World Geodetic System 1984
WMS	Web Map Service
WFS	Web Feature Service
XML	eXtensible Markup Language

1. Executive Summary

This Deliverable defines the common interoperability approach in EDIAQI and reports on the implementation progress thus far. The interoperability is an important aspect in EDIAQI ensuring that data can be shared within the project and with third parties, whenever needed and in consensus with the deliverable D2.3 Data Management Plan – version 1. The interoperability is ensured using standards for data representation and interfaces as well as including open-source components into the developed software solutions for EDIAQI. The data exchange needs adequate standards for interoperability, so that the involved parties can collect, transmit and share the data based on a common technical approach. It is necessary to establish common semantics described by machine-readable vocabularies ensuring the interpretability of the data throughout the data exchange and the foreseen analytics in EDIAQI. These semantics need to cover the elements of interest for indoor air quality studies, namely, the investigated buildings, the involved people and their respective risk level, real-time measurements of the air quality parameters and the subjective perception and complaints of people (chapter 0).

Taking well-established technical standards like the Indoor Air Quality System standard (ISO 16000) into account, a data organisation scheme was designed to ensure semantic interoperability. This schema consists of three main parts:

- 1. Metadata¹ providing information about the data.
- 2. Data, which is further divided into static and dynamic data, depending on the expected temporal resolution.
- 3. Auxiliary data describing the rooms where the data has been collected. Additionally, there are naming conventions to uniquely identify each data element. All in all, this is the necessary framework to describe what is measured in each pilot and give the technical details like units, sampling, and delivery rates.

¹ Standards for discovery metadata will be part of the next version of this deliverable (D4.7) in compliance to EU Directives and ISO technical specs (see also chapter **Error! Reference source not found.** with initial references to Dublin Core / ISO15836 and DCAT-AP).

The technical interoperability is ensured by complying to standards and by building onto of reference software solutions (chapter 4). When looking at the standard, the SensorThings API is employed as a REST communication method to transmit measurement data in JSON format over HTTP(S). The SensorThings API handles the semantics to identify the measurement as well as the environment of the measurements that produced the data. Alongside the tabular data and diagrams for statistical data, visualisation services are employed to create maps and visual representations from spatialised data. These standards are implemented by the selected open-source software implementation, like the FROST (FRaunhofer Opensource SensorThings-Server) for implementing the OGC SensorThings API Part1: Sensing 1.0 (with PostgreSQL / PostGIS for storing measurements and geospatial data) and geographical servers, like Geoserver, for implementing ISO19128 (WMS) and ISO19128 (WFS) standards.

One of the main steps will be to "map" EDIAQI concepts and semantics towards standard data models. Chapter 0 provides the initial version of a full mapping towards the entities defined by SensorThings.

The deliverable closes with a progress report on the activates in Task 4.3 so far and an outlook of the planned work until the second version of this deliverable (M24). Furthermore, the references and materials are listed at the end of this document.

2. Introduction

2.1 Rationale

The activity undertaken in Task T4.3 contributes to the "data management plan and data standard interoperability". Indeed, EDIAQI data fall within geographic information as they have a direct reference to the location where observation and measurements are taken; therefore, EDIAQI data will be transferred and handled through common standard formats and protocols already defined within the ISO 19100 series (starting from ISO 19156:2011 "Observation & Measurements"²).

Indoor Air Quality (IAQ) monitoring data will be collected according to a common interoperable technical approach, with common semantics described in machine-readable vocabularies. In task T4.3, a common methodology has been identified to be used for identifying and assessing IAQ elements and ensuring a continuous improvement of Air Hygiene and Well-being between Pilots.

The methodology followed also considers and integrates the beyond state-of-the-art technical standards on IAQ Management Systems (ISO 16000). The IAQ behavioural change monitoring campaigns will be driven by a process management which shall rest on the following pillars:

- data on building and people for a risk level and assessment of IAQ aspects building categories.
- 2. real-time analytical measurements on IAQ via wireless remote multi-sensor devices.
- 3. collection of subjective perceptions and complaints about IAQ from residents.

2.2 Deliverable objectives

The goal of this document is to define and implement a common interoperability approach and related technical solutions to guarantee that EDIAQI data collected from pilots will be shared and made accessible through adequate standards for interoperability.

² Revised by ISO 19156:2023.

The work presented here is based on an analysis of open standards defined by international organisations like the World Wide Web Consortium (W3C), the International Organisation for Standardisation (ISO), the European Committee for Standardization (CEN) and the Open Geospatial Consortium (OGC).

Particular attention has been dedicated to the availability of "open standards", defined by OGC as "agreed specification of rules and guidelines about how to implement software interfaces and data encodings" and "freely and publicly available, non-discriminatory, with no license fees, vendor neutral, data neutral and based on Consensus"³.

Open standards defined at international level guarantee the implementation of software solutions (in particular, open-source solutions) that implement them and facilitate the interoperability of data and web-based services.

³ <u>https://opengeospatial.github.io/e-learning/ogc-standards/text/services-ogc.html</u>

3. Semantic interoperability

This chapter contains the semantics agreed upon within EDIAQI to achieve interoperability between the different pilots and campaigns. The data generated within EDIAQI can be categorised into the following:

- Metadata data providing information about the data gathered from the pilots and campaigns following the IPChem template⁴.
- Data measured air quality parameters
 - Dynamic data which are continuously updated by online measurements/access (data from sensorics, data accessed from external agencies, such as outdoor air pollution and meteorological data).
 - Static data which do not change frequently (particles collected on a filter in 1 indoor space over a specified amount of time without further repetition).
- Auxiliary data similar to static data, but more constant (indoor parameters such as average occupancy, placement of sensors, number of windows and doors, building types etc.).

3.1 Data parameters

For this version of the deliverable, we focus on the air quality parameters that are chemical or physical in nature. The following parameters will be included in the final version of this deliverable:

- indoor biological parameters.
- indoor toxicological parameters.
- lifestyle metadata from questionnaires.

Once access has been ensured, the final version of this deliverable will also include semantics on outdoor air pollution data provided by external sources such as national or local agencies.

⁴ <u>IPCheM Metadata Template</u>

The semantics within the EDIAQI project are presented in the following tables. The meaning of each of the columns is described below:

- Parameter name full name of the parameter measured/identified.
- Common (C) vs pilot-specific describes if the parameter is measured/identified across all pilots and campaigns or only in some.
 - C common across all pilots and campaigns
 - P1 Ferrara pilot
 - P2 Tallinn pilot
 - P3 Zagreb pilot
 - P4 Filtration pilot
 - C2 Seville campaign
 - o C3 Vilnius campaign
- UoM unit of measure.
- Symbol parameter symbol.
- Sampling resolution how often measurements are taken.
- Reporting resolution how often are data shared to the project data platform.
- Reporting values which values are shared (e.g. min, max, average, standard deviation, ...) for a specific temporal unit (e.g. 10', 15', 20', 30', 60').

Initial vocabularies have been already identified and referenced in this chapter and also in chapter 0):

- Air Quality Pollutants (source: EEA EIONET)⁵
- Air Quality Measurement Methods (source: EEA EIONET)⁶
- Air Quality Measurement Type (source: EEA EIONET)⁷
- Eurostat Units of Measures (source: EEA EIONET)⁸

⁸ <u>https://dd.eionet.europa.eu/vocabulary/eurostat/unit/</u>

This project has received funding from the European Union's

Horizon Europe Framework Programme under grant agreement № 101057497.

⁵ <u>https://dd.eionet.europa.eu/vocabulary/aq/pollutant/</u>

⁶ <u>http://dd.eionet.europa.eu/vocabulary/aq/measurementmethod/</u>

⁷ <u>http://dd.eionet.europa.eu/vocabulary/aq/measurementtype</u>

- ECHA Chemicals database (source: ECHA)⁹
- CurrentUse of Buildings (source: GEMET INSPIRE Registry)¹⁰

Further vocabularies and ontologies will be part of the updated version of this document (D4.7 at M24).

3.2 Air Quality Data

This section contains a list of 5 tables, each one identifying the main characteristics of data foreseen in the different EDIAQI pilots and campaigns. For each parameter listed in the tables, details have been collected from EDIAQI partners to allow a synoptic view: name of the parameter, code and name of EDIAQI pilot area where the parameter is considered, the unit of measure suggested, its sampling resolution (in " seconds or ' minutes), the value(s) to be shared with the EDIAQI data platform and the temporal unit (in ' minutes) the value is referred to.

Table 1 provides a list of air quality parameters measured in indoor locations (pilot buildings). To define common semantics, the name of each parameter is based on the official EIONET Vocabulary "Pollutant"¹¹ and it is linked to the exact URI containing its definition (URI is the URL to the EIONET concept, to be referenced in the data shared - see chapter 0, ObservedProperties). In EDIAQI, each parameter will be uniquely identified with a numeric ID.

Parameter Name	ID	Common (C) vs PilotSpecific	UoM	Symbol	Sampling resolution	Values and temp. unit
<u>Particulate</u> <u>matter < 10 μm</u> <u>(aerosol)</u>	1	P1 – Ferrara	µg/m ³ (microgram per cubic meter)	PM10	P1: 5"	Average 10'10'

Table 1 Indoor air quality parameters measured with sensorics

¹¹ <u>http://dd.eionet.europa.eu/vocabulary/aq/pollutant/</u>

This project has received funding from the European Union's

Horizon Europe Framework Programme under grant agreement Nº 101057497.

⁹ https://echa.europa.eu/en/search-for-chemicals

¹⁰ <u>https://inspire.ec.europa.eu/codelist/CurrentUseValue</u>

Particulate matter < 2.5 μm (aerosol) Particulate matter < 1 μm	2	C P2 – Tallinn C3 – Vilnius	μg/m ³ (microgram per cubic meter) μg/m ³ (microgram	PM2.5 PM1	P1: 5" P2: P3: P4: C2: C3: P2: C3:	Average 10' Average 10'
<u>(aerosol)</u>			per cubic meter)			
<u>Carbon</u> <u>monoxide (air)</u>	4	P3 – Zagreb P4 – Filtration C3 – Vilnius	µg/m³ (microgram per cubic meter)	СО	P3: P4: C3:	Average 10'
<u>Carbon dioxide</u> (air)	5	C	ppm (parts per million)	CO2	P1: 5" P2: P3: P4: C2: C3:	Average 10'
<u>Ozone</u>	6	P2 – Tallinn C3 – Vilnius	µg/m ³ (microgram per cubic meter)	03	P2: C3:	Average 10'
<u>Nitrogen dioxide</u> (air)	7	P2 – Tallinn C3 – Vilnius	µg/m ³ (microgram per cubic meter)	NO2	P2: C3:	Average 10'
<u>Total volatile</u> organic compounds (air)	8	C	µg/m ³ (microgram per cubic meter)	TVOC	P1: 5" P2: P3: P4: C2:	Average 10'

					С3:	
<u>Hydrocarbons,</u> <u>C9, aromatics</u>	9	P1 – Ferrara	µg/m ³ (microgram per cubic meter)	AVOC	P1: 5"	Average 10'

Table 2 provides the list of parameters related to indoor environment to measure the thermal/climate conditions. In this table, the name of each parameter is also based on the EIONAT Vocabulary "Meteo parameter"¹² and it is linked to the exact URI containing its definition.

Table 2 Environmental	conditions	recorded	by	sensorics
-----------------------	------------	----------	----	-----------

Parameter Name	ID	Common vs Pilot-specific	UoM	Indoor or outdoor or both	Symbol	Samplin g resoluti on	Values and temp. unit
<u>Temperature</u>	10	C	°C (degrees Celsius)	both	Т	P1: 5" P2: P3: P4: C2: C3:	Average 10'
Relative humidity	11	C	% (percent)	both	RH	P1: 5" P2: P3: P4: C2: C3:	Average 10'
Pressure	12	P1 – Ferrara P3 – Zagreb P4 – Filtration C3 – Vilnius	hPa (Hectopas cal)	both	Ρ	P1: 5" P3: P4: C3:	Average 10'

¹² <u>http://dd.eionet.europa.eu/vocabulary/aq/meteoparameter/</u>

Noise	13	P3 – Zagreb P4 – Filtration C3 – Vilnius	dB (decibels)	outdoor	noise	P3: P4: C3:	Average 10'	
-------	----	---	------------------	---------	-------	-------------------	----------------	--

Table 3 considers air quality parameters for outdoor conditions related to pilot buildings.

Parameter Name	ID	Common (C) vs PilotSpecific	UoM	Symbol	Sampling resolution	Value and temp.unit
Particulate matter < 10 μm (aerosol)	1	P1 – Ferrara P3 – Zagreb P4 – Filtration C3 – Vilnius	µg/m ³ (microgram per cubic meter)	PM10	P1: 5" P3: P4: C3:	Average 10'
<u>Particulate matter</u> < 2.5 μm (aerosol)	2	С	µg/m³ (microgram per cubic meter)	PM2.5	P1: 5" P2: P3: P4: C2: C3:	Average 10'
<u>Particulate matter</u> < 1 μm (aerosol)	3	P2 – Tallinn P3 – Zagreb P4 – Filtration C3 – Vilnius	µg/m ³ (microgram per cubic meter)	PM1	P2: P3: P4: C3:	Average 10'
<u>Carbon monoxide</u> (air)	4	P3 – Zagreb P4 – Filtration C3 – Vilnius	µg/m ³ (microgram per cubic meter)	СО	P3: P4: C3:	Average 10'
<u>Carbon dioxide</u> (air)	5	P2 – Tallinn C3 – Vilnius	ppm (parts per million)	CO2	P2: P3: C3:	Average 10'
<u>Ozone</u>	6	P1 – Ferrara P2 – Tallinn P3 – Zagreb	μg/m³ (microgram	03	P1: 5" P2: P3:	Average 10'

Table 3 Outdoor air quality parameters measured by sensorics

		P4 – Filtration C3 – Vilnius	per cubic meter)		P4: C3:	
<u>Nitrogen dioxide</u> (air)	7	P1 – Ferrara P2 – Tallinn P3 – Zagreb P4 – Filtration C3 – Vilnius	μg/m ³ (microgram per cubic meter)	NO2	P1: 5" P2: P3: P4: C3:	Average 10'
<u>Total volatile</u> organic compounds (air)	8	P1 – Ferrara P2 – Tallinn C3 - Vilnius	µg/m ³ (microgram per cubic meter)	TVOC	P1: 5" P2: C3:	Average 10'
<u>Nitrogen</u> <u>monoxide (air)</u>	14	P3 – Zagreb P4 – Filtration C3 – Vilnius	µg/m³ (microgram per cubic meter)	NO	P3: P4: C3:	Average 10'

Table 4 considers additional parameters measured in specific pilots and campaigns of EDIAQI project.

Parameter Name	ID	Common vs Pilot-specific	UoM	Symbol	Sampling resolution	Data sharing frequency
Equivalent black carbon	15	C3 (short campaign)	μg/m³ (microgram per cubic meter)	eBC	1 minute	Once
Particle number concentration	16	C3 (short campaign)	#/cm ³ (number of particles per cubic centimeter)	N	5 minutes	Once
Particle number size distribution	17	C3 (short campaign)	dN/dlogDp (number of particles per log of particle diameter)	PNSD	5 minutes	Once
Radon	18	P3 – Zagreb P4 - Filtration	Bq/m ³ (Bequerel per cubic meter)	Rn	72 hours - monthly	6 months

Microplastics	19	P3 – Zagreb	#/cm² (number	MP	1 week	6 months
		P4 – Filtration	per centimeter			
		C3 – Vilnius	square)			

For three of the pilots (P1 – Ferrara, P3 – Zagreb, P4 - Filtration), filter sampling will be done to determine the chemical components of aerosols collected through a filter. Because of a differing set-up, the three pilots will be reporting the parameters according to their respective time resolutions. For the following parameters, name and reference URI are referred to the European Chemical Agency portal (ECHA)¹³.

Parameter Name	ID	Common vs Pilot-specific	UoM	Symbol	Sampling resolution	Data sharing frequency		
Volatile Organic Con	Volatile Organic Compounds - Aliphatic compounds							
<u>Methylcyclopenta</u> <u>ne</u>	20	P1 – Ferrara P3 – Zagreb P4 - Filtration	µg/m³ (microgram per cubic meter)	C6H12	15 days/6 hours	6 months		
<u>Cyclohexane</u>	21	P1 – Ferrara P3 – Zagreb P4 - Filtration	µg/m³ (microgram per cubic meter)	C6H12	15 days/6 hours	6 months		
2-Methylpentane	22	P1 – Ferrara P3 – Zagreb P4 - Filtration	µg/m³ (microgram per cubic meter)	C6H14	15 days/6 hours	6 months		
<u>Heptane</u>	23	P1 – Ferrara P3 – Zagreb P4 - Filtration	µg/m³ (microgram per cubic meter)	C7H14	15 days/6 hours	6 months		
2-Methylhexane	24	P1 – Ferrara P3 – Zagreb P4 - Filtration	µg/m³ (microgram per cubic meter)	C7H16	15 days/6 hours	6 months		
Volatile Organic Con	npounds - Cł	lorinated compoun	ds					
<u>Methylene</u> <u>chloride</u>	25	P1 – FerraraP3 – Zagreb P4 - Filtration	µg/m³ (microgram per cubic meter)	CH2Cl2	15 days/6 hours	6 months		

Table 5 Chemical components of indoor air

¹³ <u>https://echa.europa.eu/home</u>

<u>Chloroform</u>	26	P1 – FerraraP3 – Zagreb P4 - Filtration	µg/m³ (microgram per cubic meter)	CHCI3	15 days/6 hours	6 months
<u>Trichloroethylene</u>	27	P1 – FerraraP3 – Zagreb P4 - Filtration	µg/m³ (microgram per cubic meter)	C2HCl3	15 days/6 hours	6 months
<u>Tetrachloroethylen</u> <u>e</u>	28	P1 – FerraraP3 – Zagreb P4 - Filtration	µg/m³ (microgram per cubic meter)	C2Cl4	15 days/6 hours	6 months
<u>1,4-</u> <u>dichlorobenzene</u>	29	P1 – FerraraP3 – Zagreb P4 - Filtration	µg/m³ (microgram per cubic meter)	C6H4Cl2	15 days/6 hours	6 months
Volatile Organic Con	pounds - Ai	omatic compounds		<u>.</u>		
<u>Benzene</u>	30	P1 – FerraraP3 – Zagreb P4 - Filtration	µg/m³ (microgram per cubic meter)	С6Н6	15 days/6 hours	6 months
<u>Toluene</u>	31	P1 – FerraraP3 – Zagreb P4 - Filtration	µg/m³ (microgram per cubic meter)	C7H8	15 days/6 hours	6 months
<u>Ethylbenzene</u>	32	P1 – FerraraP3 – Zagreb P4 - Filtration	µg/m³ (microgram per cubic meter)	C8H10	15 days/6 hours	6 months
<u>o-xylene</u>	33	P1 – FerraraP3 – Zagreb P4 - Filtration	µg/m³ (microgram per cubic meter)	C8H10	15 days/6 hours	6 months
<u>p-xylene</u>	34	P1 – FerraraP3 – Zagreb P4 - Filtration	µg/m ³ (microgram per cubic meter)	C8H10	15 days/6 hours	6 months
<u>Styrene</u>	35	P1 – FerraraP3 – Zagreb P4 - Filtration	µg/m³ (microgram per cubic meter)	C8H8	15 days/6 hours	6 months
<u>1,3,5-</u> <u>trimethylbenzene</u>	36	P1 – FerraraP3 – Zagreb P4 - Filtration	μg/m³ (microgram per cubic meter)	C9H12	15 days/6 hours	6 months

Volatile Organic Com	pounds - Po	lycyclic aromatic hy	drocarbons (PA	Hs) - determi	ned from gravi	metric PM1
<u>Fluoranthene</u>		P3 – Zagreb P4 - Filtration	ng/m ³ (nanogram per cubic meter)	Flu	7 days	6 months
<u>Pyrene</u>	37	P3 – Zagreb P4 - Filtration	ng/m ³ (nanogram per cubic meter)	Pyr	7 days	6 months
<u>Benzo[a]anthracen</u> <u>e</u>	38	P3 – Zagreb P4 - Filtration	ng/m ³ (nanogram per cubic meter)	ВаА	7 days	6 months
<u>Chrysene</u>	39	P3 – Zagreb P4 - Filtration	ng/m ³ (nanogram per cubic meter)	Chry	7 days	6 months
<u>Benzo[j]fluoranthe</u> <u>ne</u>	40	P3 – Zagreb P4 - Filtration	ng/m ³ (nanogram per cubic meter)	BjF	7 days	6 months
<u>Benzo[b]fluoranth</u> <u>ene</u>	41	P3 – Zagreb P4 - Filtration	ng/m ³ (nanogram per cubic meter)	BbF	7 days	6 months
<u>Benzo[k]fluoranth</u> <u>ene</u>	42	P3 – Zagreb P4 - Filtration	ng/m ³ (nanogram per cubic meter)	BkF	7 days	6 months
Benzo[a]pyrene	43	P3 – Zagreb P4 - Filtration	ng/m ³ (nanogram per cubic meter)	BaP	7 days	6 months
<u>Dibenzo[a,h]anthr</u> acene	44	P3 – Zagreb P4 - Filtration	ng/m ³ (nanogram per cubic meter)	DahA	7 days	6 months
<u>Benzo(ghi)perylen</u> <u>e</u>	45	P3 – Zagreb P4 - Filtration	ng/m ³ (nanogram per cubic meter)	BghiP	7 days	6 months
Indeno[1,2,3- cd]pyrene	46	P3 – Zagreb P4 - Filtration	ng/m ³ (nanogram per cubic meter)	IP	7 days	6 months

3.3 Auxiliary Data

The following three tables offer a set of auxiliary information related to the context of EDIAQI pilots or campaigns. Each table provides a list of properties to be collected and then harmonised towards the standard data model (e.g. SensorThings).

Table 6 lists possible sources of air pollution, both outdoor and indoor, which will aid in the analysis of the data. For outdoor sources, data may be derived from official / authoritative data portals (open data catalogues or geoportals) as spatial datasets. The possibility of acquiring these datasets from official, open sources for all pilots and campaigns will be explored and described further in the final version of this deliverable (D4.7) which is due in M24.

Category	Subcategory
Outdoor sources	Traffic
	Industry
	Long-range transported pollution
	Domestic heating
Indoor sources	Outdoor air pollution
	Combustion activities
	Pets
	Clothes
	Dust resuspended by movement
	Cleaning agents
	Cigarette smoke/vape

Table 6 Auxiliary environmental conditions

Table 7 aims to provide simple information about the occupancy of indoor contexts where measurements are taken. Of course, occupancy may vary over time (hour-by-hour during a single day, or within a week) and in relation to the use of pilot building and the typologies of occupants. For the time being, in EDIAQI, we will start with a static "photograph" of the occupancy, by collecting average values about the occupants.

Category	subcategory
Value	Number of occupants per room where IAQ is monitored
Туре	Kindergartners
	Students
	Teachers
	Patients
	Visitors
	Workers
	Household dwellers
Gender	Female
	Male
	All genders
	Irrelevant
Age of occupants	0-5 years old
	5-10
	10-18
	18-25
	25-65
	>65 years old

Table 7 Auxiliary occupancy parameters

Finally, Table 8 considers the physical properties of the places where measurements are taken. Some properties may refer to the entire pilot building while others are at the level of a single room or specific part of the building.

Table 8 Auxiliary building parameters

Category	subcategories/definitions	
Building general – general information about the building which may house one or more rooms with IAQ		
monitoring		
ID	Identifier of the building	
Name	Building name if it exists	
Address locator	Address of the building	
Location	Geographical coordinates of the building	

Use of the pilot building	Residential ¹⁴	
	- Collective residence	٩
	- Individual residence	
	- Residence for com	
	Industrial ¹⁵	munities
	Commerce and services ¹⁶	
	- Office	
	- Public service	
	- Trade	
Building specific – information about		
Use of single room or building part	Residential	Living room
		Bedroom
		Kitchen
		Open space (kitchen and living room)
	Industrial	Office
		Laboratories
	Commerce and services	Office
		Laboratories
		School classroom
		Kindergarten
		Day care centre
		Sport facility
		Restaurant
		Subway station
Level	-1 (basement)	
	0 (ground level)	
	1	
	2	
	3	
	4	
	5	

¹⁴ <u>https://inspire.ec.europa.eu/codelist/CurrentUseValue/residential</u>

¹⁶ <u>https://inspire.ec.europa.eu/codelist/CurrentUseValue/commerceAndServices</u>

This project has received funding from the European Union's

Horizon Europe Framework Programme under grant agreement Nº 101057497.

¹⁵ <u>https://inspire.ec.europa.eu/codelist/CurrentUseValue/industrial</u>

	6
Floor area	Numeric in m ²
Glazed surface area	Numeric in m ²
Ventilation	None
	Manual
	Electric fan
	Air conditioning system
	Air purifier
	Central ventilation meeting
Sensor placement	Height from ground (meters)
	Distance from ceiling (meters)
	Horizontal distance to adjacent walls (meters)
	Description (on wall parallel to window, on wall where windows are)

Future versions of this document (and D4.7) will also consider the following properties:

- Lifestyle data (ANT): activities happening in the room, such as cooking.
- Health precondition (ANT): CV disease, asthma, etc.

4. Technical interoperability

4.1 Standards

This chapter contains the technical references to software interfaces, protocols, operations, etc. required at server or client levels to view, access and share EDIAQI data. The details of these technical references are based on previous EU projects (e.g. Stardust H2020¹⁷, Mistral Telecom¹⁸, GeoSmartCity CIP-PSP¹⁹, CitiEnGov Interreg-CE²⁰) as well as on well-known specifications defined by ISO, CEN, OGC and other standardisation organisations and referenced by European Directives, such as INSPIRE (2007/2/CE)²¹ and Open Data (2018/1024)²².

In the following sub-sections, we present technical requirements for all types of services to share, view and access/download data. The technical requirements are presented as tables and are divided into three main sections, following the typical the client-server architecture, with "client software sending a request for data to the server through the internet, and the server accepting the request, process it and deliver the data packets requested back to the client"²³. Usually, server-side components provide "various functionalities, often called services [or application programming interfaces²⁴], such as sharing data or resources among multiple clients or performing computations for a client"²⁵.

The requirements listed below are divided by type of software component (client, server, interface):

²⁵ https://en.wikipedia.org/wiki/Server (computing))

¹⁷ <u>https://stardustproject.eu/</u>

¹⁸ <u>https://www.mistralportal.it/</u>

¹⁹ <u>http://www.geosmartcity.eu/</u>

²⁰ https://programme2014-20.interreg-central.eu/Content.Node/CitiEnGov.html

²¹ <u>https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32007L0002</u>

²² <u>https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32019L1024</u>

²³ <u>https://www.w3schools.in/what-is-client-server-architecture</u>

²⁴ <u>https://en.wikipedia.org/wiki/API</u>

- **client**: requirements related to client software (desktop or web) directly used by human beings to search/discover, view, access EDIAQI related data.
- **server**: requirements related to server components, to be made available at single pilot's level (as well as at the level of EDIAQI Data Platform).
- interface: requirements related to standard interfaces and protocols to be considered at client and/or server-side levels to guarantee that two software components (client and server) exchange information securely over the Internet with interoperable capabilities.

Standards and reference software solutions were fully described to EDIAQI partners during 4 webinars organised from June to October 2023. Presentations and YouTube videos are available on the <u>EDIAQI project web site</u>. Annex I also contains a list of reference materials available:

- Webinar 1 (June 21st, 2023)
 - \circ Introduction
 - o Data Interoperability Examples
 - SensorThings
 - o Endpoint and STA requests
 - o FROST
 - o STAplus extension
 - o INSPIRE
- Webinar 2 (July 21st, 2023)
 - \circ Introduction
 - o FROST-Overview
 - FROST Deployment
 - FROST Docker Deployment
 - NiFi Ingestion
 - Semantics
- Webinar 3 (September 29th, 2023)
 - \circ Introduction
 - JS web dashboards for STA

• Python QGIS plugin STA

• Webinar 4 (October 27th, 2023)

- o Introduction
- o CityGML
- CityGML Software
- o 3DCityDB
- 3DCityDB Tools QGis

The following subsections contain information about possible standards to be considered for the sharing of EDIAQI dynamic data collected from sensors.

4.1.1 SensorThings API

From a technological perspective, this means that sensors are "accessible via a unique URL identifier and its functionalities (e.g. observation results) are addressable via standard HTTP operations (GET, POST, PUT, etc.), thus allowing access to sensor data with a RESTful API"²⁶ (RESTful API is an interface used by two computer systems to exchange information securely over the Internet).

In EDIAQI, the term "sensor" is conceived with a broad meaning also including hardware/software equipment and mobile devices used to automatically register data (measurements). These measurements are already part of the EDIAQI semantics described above (see Chapter 3) while others can be easily mapped against the data model classes. In EDIAQI, the reference standard to be considered for sharing dynamic data in a formalised and interoperable way is SensorThings APIs (STA)²⁷ standard, approved in 2016 by the Open Geospatial Consortium (OGC)²⁸.

The solution identified requires that compatible REST clients are setup at single pilot level, be able to communicate with the STA service and send the data in with HTTP calls (or HTTPS) in POST, PUT or GET operations, transmitting data in JSON payload.

²⁸ <u>https://www.opengeospatial.org/</u>

This project has received funding from the European Union's Horizon Europe Framework Programme under grant agreement № 101057497.

²⁶ <u>https://52north.github.io/sensor-web-tutorial/08_iot.html</u>

²⁷ <u>https://www.ogc.org/standard/sensorthings/</u>

STA is based on the OGC/ISO 19156:2011 and provides an open and unified framework to interconnect IoT sensing devices, data, and applications over the Web. It is an open standard addressing the syntactic interoperability and semantic interoperability of the Internet of Things. It complements the existing IoT networking protocols such CoAP, MQTT, HTTP, 6LowPAN. While the above-mentioned IoT networking protocols address the ability for different IoT systems to exchange information, STA addresses the ability of different IoT systems to use and understand the exchanged information.

Figure 1 - Entities (classes) of the SensorThings data model

The meaning of STA entities must be very clear:

- Thing: an object of the physical world (physical thing) or the information world (virtual thing) that is capable of being identified and integrated into communication networks.
- Locations: locates the *Thing* or the *Things* it associated with.
- **HistoricalLocations**: provides the current (i.e., last known) and previous locations of the *Thing* with their time.

- **Datastream**: a collection of Observations and the Observations in a *Datastream* measure the same *ObservedProperty* and are produced by the same *Sensor*.
- **ObservedProperty**: specifies the phenomenon of an *Observation*.
- **Sensor**: an instrument that observes a property or phenomenon with the goal of producing an estimate of the value of the property.
- **Observation**: act of measuring or otherwise determining the value of a property.
- **FeatureOfInterest**: an *Observation* results in a value being assigned to a phenomenon. The phenomenon is a property of a feature, the latter being the *FeatureOfInterest* of the *Observation*.

As SensorThings is a RESTful web service, each entity can be CREATE, READ, UPDATE, and DELETE with standard HTTP verbs (POST, GET, PATCH, and DELETE).

It is also noteworthy mentioning another standard defined by OGC: the SensorML²⁹ is a "standard models and an XML encoding for describing sensors and measurement processes. SensorML can be used to describe a wide range of sensors, including both dynamic and stationary platforms and both in-situ and remote sensors".

SensorML is a potential encoding format for both STA and may provide a robust way to get dynamic data about air quality or other topics in an interoperable format, thus independently from the original data model and technologies used at source level.

The following tables provide the list of minimum requirements at client, server and interface levels:

²⁹ https://en.wikipedia.org/wiki/SensorML

ID	DESCRIPTION
1.	Client-side software enabled to access dynamic data shall allow the users to specify a
	Bounding Box spatial filter in a map
2.	Client-side software shall allow the users to determine a time window filter with a (from, to)
	datetime fields.
3.	Client-side software shall allow the users to filter specific sensors (or in OGC terms, filtering by
	procedures or offerings).
4.	Client-side software shall allow the users to filter specific type of observation property.
5.	Client-side software shall allow the users to request existing observations for the content,
	spatial and temporal filters defined in previous requirements.
6.	Client-side software shall provide a mechanism to subscribe to streaming generated values
	defined with previously specified filters.
7.	Client-side software shall allow the user to explore the time series observation results for a
	single sensor.
8.	Client software shall show the available features of interest in a map

Table 9 Technical details for sensor data streaming services - client

Table 10 Technical details for sensor data streaming services - server

ID	DESCRIPTION
	Server-side software shall support the OGC SensorThings API standard, with at least the
	following operations:
9.	Create
9.	• Read
	• Update
	• Delete
10.	Server-side software shall support the following format bindings:
	• NOSL •
	• XML
	• KVP
11.	Server-side software shall provide a mean to subscribe to streaming data to avoid clients to
	develop a mechanism to decide whether new data is available.
12.	Server-side software shall be able to work with different RDBMS systems, with preference to
	open-source platforms as PostgreSQL.
13.	Server-side software shall provide a mechanism to connect the service to underlying MQTT
	standard protocol.

4.1.2 Web Map Service interface (ISO19128)

Web Mapping Services (WMS) provide the visualisation of geographical representation of real world's phenomena, i.e. a map, as picture of spatial objects. Geographical representation means producing and sharing an image (a map) from spatial data, applying a set of rendering rules, otherwise viewing a classic alphanumeric dataset can be achieved producing a tabular representation or a graphical one.

Due to the fact that sometimes geographical representation may be misunderstood as data access, it may be appropriate to highlight here the main differences:

- accessing data involves the possibility of querying, sub-setting and filtering (it's a necessary condition, but not sufficient since certain view services have the capabilities of expressing a filter).
- 2. accessing data necessarily use a physical data format but does not depend on it; the representation of data instead is an integral part of viewing services.
- 3. very often in mapping services, the representation of data completely hides underlying data making it impossible to recover them (approximations, portrayal, simplifications, generalisation, aggregation, etc.).

In EDIAQI, maps and geographical representations of the locations of pilot buildings and monitoring units will be shown via standard protocols like the WMS (Web Map Service, also ISO19128) and/or the WMTS (Web Map Tile Service), both published by OGC. Tile based web maps will be made available based on storage of predefined tiles (from thousands to millions). The software components generated by EDIAQI will also offer functionalities to let clients visualise:

- tabular data, with filtering/searching capabilities to extract or sort subset of datasets.
- graphics (dashboards), based on open source Javascript libraries to render statistical data with high quality diagrams and presentation styles.

WMS provides a simple HTTP interface for requesting geo-registered map images from one or more distributed geospatial databases³⁰. A WMS request defines the geographic layer(s) and area of interest to be processed. The response to the request is one or more geo-

³⁰ <u>https://www.ogc.org/standard/wms/</u>

registered map images (returned as JPEG, PNG, etc) that can be displayed in a browser application. The interface also supports the ability to specify whether the returned images should be transparent so that layers from multiple servers can be combined or not. Version 1.3 of WMS standard by OGC and ISO19128 are the same documents. The following tables provide the list of minimum requirements at client, server and interface levels:

ID	DESCRIPTION
1.	Client-side software enabled to view web maps shall allow users to view and browse a map (zoom, pan)
2.	Client-side software shall allow users to query and select data
3.	Client-side software shall allow users to retrieve maps and/or data provided by remote nodes, adding layers at least as OGC WMS
4.	 Client-side software shall allow users to add layers to the map in the Table of Content (ToC) in the following ways: from a URL (OWS GetCapabilities) from a search on a list of catalogued services
5.	Client-side software shall allow users to change the opacity/transparency of each layer
6.	Client-side software shall allow users to export and save locally the context of the map in the following graphic formats: PNG, JPEG, PDF.
7.	Client-side software shall allow users to export and save locally the context of the map as hyperlink (permalink)
8.	Client-side software shall allow users to export and save locally vector data as KML file
9.	Client-side software shall allow users to export and save locally vector data as SHP file
10.	Client-side software shall allow users to change the Coordinate Reference System (CRS) of the map. The minimum set of CRSs available to the user shall be the one defined in INSPIRE Data Specifications.
11.	Client-side software shall allow users to change the CRS of the data exported (by means of Coordinate Transformation Service)
12.	Client-side software shall allow users to view metadata of selected WMS endpoints by accessing metadata through the WMS interface
13.	Client-side software shall allow users to view non-geographical information associated to layers, by clicking on the map (WMS GetFeatureInfo operation).

Table 11 Technical details for web map services - client

ID	DESCRIPTION				
14.	Server-side software shall support OGC WMS 1.3.0 (Web Map Service, also ISO19128)				
	Server-side software shall support the following operations (OGC WMS):				
15.	GetCapabilities				
	• GetMap				
	GetFeatureInfo				
	Server-side software shall allow the loading and serving at least one of the following vector data				
	formats:				
	GML (also according to INSPIRE Data Specifications)				
16.	ESRI Shapefile				
	JSON / Geojson				
	• KML				
	• CSV				
17.	Server-side software shall support cascading Web Feature Service (WFS)				
	Server-side software shall allow the representation of attributes values related to geographical				
18.	phenomena as choropleth maps; choropleth maps are thematic maps in which areas are shaded				
10.	or patterned in proportion to the measurement of the statistical variable being displayed on the				
	map, such as population density or per-capita income				
19.	Server-side software shall allow the representation of attributes values related to geographical				
15.	phenomena as external graphics overlaid to the map				

Table 12 Technical details for Map Services - server

Table 13 Technical details for Map Services - interface

ID	DESCRIPTION
	Web mapping services shall comply with the "Commission Regulation (EC) No 976/2009 of 19
20.	October 2009 implementing Directive 2007/2/EC of the European Parliament and of the Council
20.	as regards the Network Services":
	http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32009R0976
21.	Web mapping services shall comply with INSPIRE View Service technical guidance:
21.	http://inspire.jrc.ec.europa.eu/documents/Network Services/
22.	Web mapping services shall support OGC SLD specification:
22.	http://www.opengeospatial.org/standards/sld
23.	Web mapping services shall support OGC Filter Encoding specification:
23.	http://www.opengeospatial.org/standards/filter
24.	Web mapping services shall support CQL specification:

http://www.loc.gov/standards/sru/cql/spec.html

4.1.3 Web Feature Service interface (ISO19142)

As per INSPIRE definitions, a download service is equivalent to a service based on a standard protocol: in case of spatial data being managed as vectors, this means applying the Web Feature Service standard protocol (WFS, also ISO19142). The intention is that the user is given access to the raw data values instead of a cartographic representation (as is the case of mapping services with WMS requests that only return a map image as simple graphical representation).

In EDIAQI, WFS protocol is recommended to complement SensorThings API for static data (e.g. data about noise and sources of pollution, usually being spatial data and thus to make accessible through standard protocol).

WFS represents a change in the way geographic information is created, modified and exchanged on the Internet³¹. Rather than sharing geographic information at the file level using File Transfer Protocol (FTP), for example, the WFS offers direct fine-grained access to geographic information at the feature and feature property level.

This International Standard specifies discovery operations, query operations, locking operations, transaction operations and operations to manage stored, parameterised query expressions.

Discovery operations allow the service to be queried to determine its capabilities and to retrieve the application schema that defines the feature types that the service offers. Query operations allow features or values of feature properties to be retrieved from the underlying data store based upon constraints, defined by the client, on feature properties. Locking operations allow exclusive access to features for the purpose of modifying or deleting features.

Transaction operations allow features to be created, changed, replaced and deleted from the underlying data store; stored query operations allow clients to create, drop, list and

³¹ <u>https://www.ogc.org/standard/wfs/</u>

described parameterized query expressions that are stored by the server and can be repeatedly invoked using different parameter values.

In the taxonomy of services defined in ISO19119, WFS is primarily a feature access service but also includes elements of a feature type service, a coordinate conversion or transformation service and geographic format conversion service. Version 2.0.0 of WFS standard by OGC and the ISO19142 are the same documents.

Table 14 Technical details for Download Services - client

ID	DESCRIPTION
1.	Client-side software enabled to access geographical data shall allow users to extract features
1.	from download services and provide functionalities to download (subset of) datasets locally.
2.	Client-side software shall be able to compose queries (using CQL and/or OGC FE filters).
	Client-side software shall allow users to change the Coordinate Reference System (CRS) of the
3.	map. The minimum set of CRSs available to the user shall be the one defined in INSPIRE Data
	Specifications.

Table 15 Technical details for Download Services – server

ID	DESCRIPTION			
4.	Client-server software providing geographical data shall support OGC WFS 2.0 (Web Feature Service, ISO19142)			
5.	Client-server software shall support operations (OGC WFS): GetCapabilities DescribeFeatureType GetFeature 			
6.	Client-server software shall inform the client about the common and specific capabilities of a download access service.			

Table 16 Technical details for Download Services - interface

ID	DESCRIPTION
	Client-server software shall comply with the "Commission Regulation (EC) No 1088/2010 of
-	23 November 2010 amending Regulation (EC) No 976/2009 as regards download services
7.	and transformation services":
	http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:02009R0976-20101228
8.	Client-server software shall comply with the INSPIRE Download Service technical guidance:
0.	http://tinyurl.com/no33tnj

9. Client-server software shall support OGC FE specification: http://www.opengeospatial.org/standards/filter	
10.	Client-server software shall support CQL specification: http://www.loc.gov/standards/sru/cql/spec.html
11.	Client-server software shall support OGC GML specification (3.2.1): http://www.opengeospatial.org/standards/gml

4.1.4 CityGML

The CityGML standard defines a conceptual model and exchange format for the representation, storage and exchange of virtual 3D city models³². It facilitates the integration of urban geodata for a variety of applications for Smart Cities, Urban Digital Twins and other use cases.

CityGML 3.0 is an evolution of the previous versions 1.0 and 2.0 of CityGML. While the previous versions standardised a GML exchange format, CityGML 3.0 standardises the underlying information model, and can be implemented in a variety of technologies including GML. The CityGML 3.0 Conceptual Model Standard describes a common semantic information model for the representation of 3D urban objects. The primary function of the model is to define the human interpretation of modelled data objects as well as their geometric representation and relationships. As such the CityGML 3.0 Conceptual Model provides a framework for integrating, storing, and exchanging 3D geospatial data. CityGML 3.0 allows data to be encoded in GML/XML, but also in JSON or database schemas. Additional benefits compared to previous versions include much better integration with BIM, the ability to represent indoor spaces in different Levels of Detail (LOD), support for dynamic data provided by sensors and simulations, and the capability to extend the information model into Application Domain Extensions using Model Driven Architecture tools.

In the CityGML standard, the class "Building" is defined as "a free-standing, self-supporting construction that is roofed, usually walled, and can be entered by humans and is normally

³² <u>https://www.ogc.org/standard/citygml/</u>

designed to stand permanently in one place. It is intended for human occupancy (e.g. a place of work or recreation), habitation and/or shelter of humans, animals or things". "A "Building" may be characterised by many "BuildingParts" (a physical or functional subdivision of a Building. It would be considered a Building, if it were not part of a collection of other BuildingParts) and/or many "BuildingRoom" (a space within a Building or BuildingPart intended for human occupancy (e.g. a place of work or recreation) and/or containment of animals or things. A BuildingRoom is bounded physically and/or virtually). Moreover, a building may have one or more "BuildingUnit" (is a logical subdivision of a Building. BuildingUnits are formed according to some homogeneous property like function, ownership, management, or accessibility)."

Different Level Of Details (LOD) may be considered for objects representing a building:

Figure 2 - Level Of Details (LOD) of CityGML

At LOD3 and LOD4, interior specific elements (spatial objects) can be modelled to represent single rooms, openings, windows, doors,... with their specific properties.

4.2 Reference open-source software solutions

This section introduces a short list of reference software solutions implementing the standards mentioned above. All software listed below are open-source projects, free of charge and with source code released with open licenses. FROST server is the solution identified and suggested to efficiently implement an interoperability solution to share EDIAQI data (listed in chapter 0) among project partners.Open standards defined at international level guarantee the implementation of software solutions (in particular, open-source solutions) that implement them and facilitate the interoperability of data and web-based services.

Semantic interoperability

4.2.1 FROST (FRaunhofer Opensource SensorThings-Server)

In EDIAQI, the FRaunhofer Opensource SensorThings-Server (FROST) solution is recommended to fully implement and exploit the capabilities of SensorThings standard. In chapter 0 a complete mapping is provided between the EDIAQI concepts (defined in chapter 0) and the standard data model of SensorThings. This will allow EDIAQI partners to share data about indoor air quality, outdoor air quality and auxiliary data in an interoperable a standard-conformant way.

The FRaunhofer Opensource SensorThings-Server is the first complete, open-source official reference implementation of the OGC SensorThings API Part 1: Sensing 1.0. In response to the increasing requirements arising from diverse applications within the "Internet of Things" paradigm, the Fraunhofer Institute for Optronics, System Technologies and Image Exploitation (IOSB) embarked on the development of a server tailored for the Standard SensorThingsAPI. The result of this effort is the FROST®-Server, an acronym denoting "Fraunhofer Open Source SensorThings API Server. As suggested by its name, FROST was developed to be open source to enhance usability within both research and commercial domains.

Moreover, the FROST Server is rooted in the SensorThings API and this foundation ensures adherence to widely recognised norms in spatial data representation.

FROST Server also provides versatile deployment alternatives, accommodating both Tomcat and Docker deployment frameworks. Notably, FROST demonstrates horizontal scalability, a feature integral to its adaptability. Additionally, leveraging its foundation on PostgreSQL, an inherently scalable relational database management system, FROST facilitates the establishment of multiple PostgreSQL clusters, augmenting its scalability in handling diverse workloads.

In the pursuit of optimal system performance, FROST Server is designed to meet the requirements of dynamic and data-intensive applications. This commitment to high performance aligns with the imperatives of contemporary data ecosystems, where rapid and efficient data processing is imperative for effective decision-making and operational continuity.

4.2.2 PostgreSQL / PostGIS

FROST Server relies on PostgreSQL³³ solution to store and manage data about observations, observed properties, sensors, locations and other STA entities. Therefore, in EDIAQI PostgreSQL is recommended as RDBMS solution implementing SQL, with PostGIS extension enhancing the storage and management of spatial information (location of monitoring units, features of interest corresponding to pilot buildings and/or single rooms or buildings' parts) in compliance to ISO19100 standard series as well as OGC specifications. PostGIS is an extension adding a spatial dimension to the capabilities of PostgreSQL. In the range of geospatial technology, PostGIS enriches PostgreSQL to store, query, and manipulate spatial data. It enables the integration of location-based information into database systems, offering a versatile solution for professionals in fields such as geography,

urban planning, environmental science, and beyond.

4.2.3 Spatial server implementing WMS and WFS standard

In EDIAQI it is important to provide information about the "spatial" dimension of data. This means that at project level there is the need to deploy and configure a spatial server implementing WMS and WFS standards (mentioned above).

The solution recommended is GeoServer, "an open-source server written in Java that allows users to share, process and edit geospatial data. Designed for interoperability"³⁴, GeoServer is able to manage a variety of data formats (including the mayor RDBMS platforms like Oracle, PostgreSQL/PostGIS or standard geographical formats like GML, Shapefile, GeoTIFF, ...) as well as remote sources. It provides access to data via standard OGC protocols (in particular, WMS and WFS) with different output formats (KML, GML, Shapefile, GeoRSS, PDF, GeoJSON, JPEG, GIF, SVG, PNG).

GeoServer additionally supports efficient publishing of geospatial data to Google Earth using network links, using KML standard format (Google Earth)³⁵.

³⁵ <u>https://ogc.org/standards/kml</u>

³³ https://www.postgresql.org/

³⁴ <u>https://docs.geoserver.org/2.21.x/en/user/introduction/history.html</u>

4.2.4 QGIS and plugin SensorThings API

To access and browse observations and other data provided within EDIAQI pilots and campaigns, a desktop GIS software could be a useful solution to fulfil the overall goal of making EDIAQI data really "FAIR" (Findable, Accessible, Interoperable and Reusable). The recommended GIS software is the open-source Quantum Geographic Information System (QGIS), world-wide used by millions of users³⁶ at different levels and for different purposes.

In 2022, DedaNext³⁷ developed a SensorThings API plugin for QGIS within the AIR-BREAK project³⁸. The plugin enables QGIS software to access dynamic data from sensors, using SensorThings API protocol. In 2024, the functionalities of this plugin will be refactored and extended within the core code of QGIS (embedding the capabilities to access SensorThings endpoints in the basic QGIS component, without the need to download and install an external plugin)³⁹.

4.2.5 3DCityDB + QGIS plugin 3DCityDB Tool

As EDIAQI data are related to "buildings" and indoor spaces, a 3D model of pilot buildings is suggested as possible goal to better and fully exploit the spatial dimension of EDIAQI data. In particular, a spatial 3D model of a building allows for the integration of heterogeneous (geo-related) information within a single framework and, therefore, create and manage complex spatial analysis.

To store 3D models, both file-based and database approaches can be used: there is no single, unique representation schema due to the heterogeneity and diversity of 3D models of spatial objects. The 3D City Database (3DCityDB) is suggested for modelling and storing spatially enabled information about EDIAQI pilot buildings; 3DCityDB a free and open-source package consisting of a database schema (based on PostgreSQL/PostGIS platform and

³⁹ https://github.com/qgis/QGIS-Enhancement-Proposals/issues/257

³⁶ <u>https://www.gispo.fi/en/blog/how-big-is-the-qgis-community/</u>

³⁷ <u>https://www.dedanext.it/</u>

³⁸ <u>https://www.uia-initiative.eu/en/uia-cities/ferrara</u>

Oracle Spatial) and a set of software tools to import, export, manage, analyse, and visualise virtual 3D models.

3DCityDB is built upon the CityGML standard and represents its SQL implementation. To fully exploit the 3DCityDB, another QGIS plugin is suggested: the 3DCityDB Tools for QGIS⁴⁰.

⁴⁰ <u>https://github.com/tudelft3d/3DCityDB-Tools-for-QGIS</u>

5. Mapping EDIAQI concepts towards standard data models

This section contains the mapping proposed between the data considered in EDIAQI (chapter 0) and standard data models (chapter 4).

5.1 STA data model

For the following data (listed in chapter 0), the mapping proposed is towards SensorThings. The SensorThings data schema is based on the "<u>OGC SensorThings API Part 1: Detection</u>":

- Indoor air quality parameters measured with sensorics.
- Environmental conditions recorded by sensorics.
- Outdoor air quality parameters measured by sensorics.
- Additional indoor air quality parameters measured in specific pilots and campaigns.
- Chemical components of indoor air.
- Auxiliary occupancy parameters.
- Auxiliary building parameters.

As an implementation of the Sensor Things API (STA), in chapter 4 the open-source FROST implementation is suggested, documented in the corresponding Github repository⁴¹. The initial configuration of the FROST application also includes the creation of a schema compliant with the STA standard on the PostgreSQL database (describe above), therefore please refer to the FROST installation instructions available on Github.

In EDIAQI, the list of parameters to be loaded is mapped onto the entities of the SensorThings schema according to the following tables, where reference is made to the names of the attributes of the original structure of the data and to JSON Objects containing user-annotated properties as Key-Value Pairs, which is used to distinguish the data from different pilots and/or to provide further information and details (for instance, sensors'

⁴¹ <u>https://github.com/FraunhoferIOSB/FROST-Server</u>

metadata⁴²). The following entities of the SensorThings standard (sources: ISO19156 "Observation&Measurements"⁴³ and W3C "Semantic Sensor Network Ontology"⁴⁴):

- Thing: a thing is any object of the physical world (physical things) or the IT world (virtual things) that is capable of being identified and integrated into communication networks [ITU-T Y.2060]. In EDIAQI, a Thing corresponds to the physical object equipped with one or more sensors to measure certain phenomena (ObservedProperties).
- Location: one example of location is the building or the room in which a wificonnected thermostat is located⁴⁵. And the FeatureOfInterest of the Observations made by the thermostat (e.g., room temperature readings) should also be the building or the room. In EDIAQI, a Location corresponds to the geographical position (long/lat) where the Thing is installed (e.g. air quality monitoring unit).
- FeatureOfInterest: following the example above, the FeatureOfInterest of a wificonnect thermostat can correspond to the Location of the thermostat (i.e., the living room where the thermostat is located). In EDIAQI, a feature of interest corresponds to the single room or part of the building whose properties are being measured (ObservedProperties).
- Sensor: a sensor is any entity capable of observing a phenomenon and returning an observed value as output. According to EEA EIONET vocabulary⁴⁶, different types of measurements can be considered for air quality (active, automatic, passive, remote, unknown). In EDIAQI, a sensor is the actual device (with electronic or mechanical components) used to take the measurement, for instance related to air quality or other aspects.

⁴⁶ http://dd.eionet.europa.eu/vocabulary/aq/measurementtype/view

⁴² SensorThings API defines two common Sensor metadata encodingTypes. Most sensor manufacturers provide their sensor datasheets in a PDF format. As a result, PDF is a Sensor encodingType supported by SensorThings API. The second Sensor encodingType is SensorML: <u>https://www.ogc.org/standard/sensorml/</u>

⁴³ https://docs.ogc.org/is/18-088/18-088.html

⁴⁴ https://www.w3.org/TR/vocab-ssn/

⁴⁵ STA data model also provides the concept.

- **ObservedProperty**: W3C SSN describes the "ObservableProperty" (synonym) as an observable quality (property, characteristic) of a FeatureOfInterest. Examples are the height of a tree, the depth of a water body, the temperature of a surface, or the concentration of NO2 are examples of observable properties). In EDIAQI, an observed property refers to the single parameter measured.
- Observation: an Observation is the act of measuring or otherwise determining the value of a property⁴⁷. According to W3C "SSN", it corresponds to the procedure to estimate or calculate a value of a property of a FeatureOfInterest; links to a Sensor to describe what made the Observation and how; links to an ObservableProperty to describe what the result is an estimate of, and to a FeatureOfInterest to detail what that property was associated with. In EDIAQI, an observation is the single resulting quantitative value and its correspondent datetime (expressed in ISO 8601 standard format)
- DataStream: this entity groups a collection of Observations measuring the same ObservedProperty and produced by the same Sensor. In EDIAQI, a datastream is the logical group of observations of a specific observed property together with a specific unit of measurement, made by a specific sensor.

In the following tables (one for each STA entity) a list of elements is provided as defined by the STA standard data model; specific data needed in EDIAQI will be implemented using the "properties" element and nested sub-elements. The tables contain, for each element, the corresponding datatype (e.g. string, integer, double, ...) and its multiplicity:

- 0..1 = optional (max one occurrence)
- 0..N = optional (more than one occurrence)
- 1 = mandatory (max one occurrence)

⁴⁷ OGC 10-004r3 and ISO 19156:2011

5.1.1 Things

In EDIAQI, a "Thing" corresponds to the physical object equipped with one or more sensors to measure certain phenomena

(ObservedProperties). For simplicity, a "Thing" may be monitoring unit (equipped with more than one sensor) or a sampler.

Table 17 Mapping EDIAQI data towards STA data model: "Things" entity

STA element	Description (EDIAQI)	Data type	Multiplicity	Example
name	Name or code of the thing	String	1	EDIAQI.FE.001 for pilot P1 Ferrara
description	Verbose description of the thing	String	1	IAQ unit 001 at Istituto Copernico-Carpeggiani Ferrara for monitoring parameters A, B, C, D,
properties	A JSON Object containing user-annotated properties as key-value pairs	JSON Object	01	
identifier	Project id for the thing with the following pattern: - EDIAQI (fixed) - 2-digit code for pilot area (es. FE) - 3-digit code for the thing	String	1	EDIAQI.FE.001
owner	URI of the owner of the thing	URL	1	https://www.labservice.it/
beginTime	Datetime of installation of the thing	dateTime (YYYY-MM-DD)	1	2023-01-02

EDIA

Examples of a "Thing" can be Radiello passive samplers (left) or NetPID monitoring units (right):

Figure 3 - Radiello passive sampler

Figure 4 - NetPID monitoring unit

5.1.2 Locations

In EDIAQI, a Location corresponds to the geographical position where the Thing is installed (e.g. air quality monitoring unit). The location shall be provided at least as geographical coordinates of the pilot building, but it is preferred to provide the exact location of the single thing. In both cases, the geometry representing the location of the thing is a "point", with geographical coordinates expressed in longitude and latitude (spatial reference system WGS84 aka EPSG:4326). The "properties" element will allow to manage the specific information needed in EDIAQI to characterise the pilot building (as whole building) and the single room or building part where the thing is located, with details about its installation.

STA element	Description (EDIAQI)	Data type	Multiplicity	Example
name	Name or code of the location expressed as: - name of the building (if available) - name or code of the single room or building part	String	1	Istituto Copernico-Carpeggiani Ferrara, classe 6A
description	Description of the location where the thing is located, with verbose details	String	1	The thing has been installed at the ground floor in classroom 6A of the high school Istituto Copernico-Carpeggiani
encodingType	Type of encoding for representing the location of the pilot building	Default = 'application/geo+json' ⁴⁸	1	application/geo+json

⁴⁸ Currently geojson is the only Location encodingType of the SensorThings API. GeoJSON supports the following geometry types: Point, LineString, Polygon, MultiPoint, MultiLineString, and MultiPolygon. Geometric objects with additional properties are Feature objects. Sets of features are contained by FeatureCollection objects: https://datatracker.ietf.org/doc/html/rfc7946

This project has received funding from the European Union's

location	(note: the following rows represent an excerpt of a normal GeoJSON structure for a point representing the exact location as longitude/latitude of the thing installed)		1	
type	Type of spatial feature representing the location of the thing	Default = 'Point'	1	Point
coordinates	List of coordinates	List of geographical coordinates	1	
0	First coordinate (long) of the location of the pilot building	Double (min. 5 decimals, max 8)	1	11.64273
1	Second coordinate (lat) of the location of the pilot building	Double (min. 5 decimals, max 8)	1	44.82996
properties	A JSON Object containing user-annotated properties as key-value pairs	JSON Object	01	
identifier	 Project id for the location with the following pattern: EDIAQI (fixed) 2-digit code for pilot area (es. FE) 3-digit code for the location of the thing 	String	1	EDIAQI.FE.001
building	General information about the pilot building where the thing is located		1	
owner	URI of the owner of the pilot building	URL	01	https://www.provincia.fe.it/
identifier	Local identifier of the pilot building	String	01	FEIS01200X
address	Address locator, expressed as human readable designator or name that allows a user or application to reference and distinguish the address from neighbour addresses, within the scope of a thoroughfare name, address area name, administrative unit name or postal	String	1	Via Pontegradella 25, 44123 Ferrara

This project has received funding from the European Union's

	designator, in which the address is situated			
country	Code of the country (ISO 3166-1) where the pilot building is located	String	1	іт
use	Current use of the whole building, according to INSPIRE Directive (2007/2/CE) codelist for "Buildings" data theme ⁴⁹	Codelist Residential - Collective residence - Individual residence - Residence for communities Industrial Commerce and services - Office - Public service - Trade	1	Public service
use_details	Detailed information about the use of the whole pilot building	String	01	Public high school
3Dmodel	External reference to 3D model representing the whole building as geographical dataset (e.g. in CityGML or KML format)	URL	01	
room	Details about the placement of the thing (sensor placement in §Auxiliary Data)		01	
identifier	Local identifier of the room	String	01	6A
elevation	Overall height above sea level (meters) of the thing	Double (2 decimals)	01	14.23
level	Floor number where the thing is located (single room or building part)	Integer	01	3

⁴⁹ <u>https://inspire.ec.europa.eu/codelist/CurrentUseValue</u>

This project has received funding from the European Union's

height	Height from room floor (meters) of the thing	Double (2 decimals)	01	1.55
d_ceiling	Distance from room ceiling (meters) of the thing	Double (2 decimals)	01	3.12
d_horizontal	Horizontal distance to adjacent walls (meters) of the thing	Double (2 decimals)	01	0.90
3Dmodel	External reference to 3D model representing the single room (e.g. in CityGML or KML format)	URL	01	

EDIA

Figure 5 - Location of the Thing corresponding to building address (see it on GoogleMaps)

Figure 6 - Exact location of the Thing (see it on GoogleMaps)

5.1.3 FeatureOfInterest

In EDIAQI, a feature of interest strictly corresponds to the single room or part of the building whose properties are being measured (ObservedProperties). The element "properties" can be used to manage specific details needed in EDIAQI to manage information related to the room or building part and its occupancy.

Table 19 Mapping EDIAQI data towards STA data model: "FeatureOfInterest" entity

STA element	Description (EDIAQI)	Data type	Multiplicity	Example
name	Name or code of the single room or building part that is monitored	String	1	Class6A
description	Verbose description of the feature of interest (single room or building part)	String	1	Classroom 6A
encodingType	Type of encoding for representing the feature of interest (single room or building part)	Default = 'application/geo+json' ⁵⁰	1	application/geo+json
feature	(note: the following rows represent an excerpt of a normal GeoJSON structure for a polygon with N vertexes)		1	
type	Geographical extent of the area (single room or building part) whose properties are being measured	Default = 'Polygon'	1	Polygon
coordinates	List of coordinates	List of geographical coordinates	1	
0	1st vertex of the polygon			
0	Longitude of the feature of interest (single room or building part)	Double (min. 5 decimals, max 8)	1	11.64273
1	Latitude of the feature of interest (single room or building part)	Double (min. 5 decimals, max 8)	1	44.82996
1	2nd vertex of the polygon			

⁵⁰ Currently geojson is the only Location encodingType of the SensorThings API. GeoJSON supports the following geometry types: Point, LineString, Polygon, MultiPoint, MultiLineString, and MultiPolygon. Geometric objects with additional properties are Feature objects. Sets of features are contained by FeatureCollection objects (https://datatracker.ietf.org/doc/html/rfc7946)

This project has received funding from the European Union's

EDIA

0	Longitude of the feature of interest (single room or building part)	Double (min. 5 decimals, max 8)	1	11.64273
1	Latitude of the feature of interest (single room or building part)	Double (min. 5 decimals, max 8)	1	44.82996
N	Nth vertex of the polygon			
0	Longitude of the feature of interest (single room or building part)	Double (min. 5 decimals, max 8)	1	11.64273
1	Latitude of the feature of interest (single room or building part)	Double (min. 5 decimals, max 8)	1	44.82996
properties	A JSON Object containing user-annotated properties as key-value pairs	JSON Object	01	
identifier	Project id for the feature of interest, with the following pattern: - EDIAQI (fixed) - 2-digit code for pilot area (es. FE) - 3-digit code for the feature of interest	String	1	EDIAQI.FE.001
room	Details about the placement of the thing (sensor placement in §Auxiliary Data)		01	
identifier	Local identifier of the single room or building part	String	01	6A
elevation	Overall height above sea level (meters) of the thing	Double (2 decimals)	01	14.23
level	Floor number where the thing is located (single room or building part)	Integer	01	0
3Dmodel	External reference to 3D model representing the single room (e.g. in CityGML or KML format)	URL	01	
use	Current use of the feature of interest (single room or building part)	Codelist - Living room - Bedroom - Kitchen	1	Classroom

This project has received funding from the European Union's

		 Open space (kitchen and living room) Office Laboratory Classroom Sport facility Restaurant Subway station 		
use_details	Detailed information about the use of the feature of interest (single room or building part)	String	01	Classroom used by teachers and students for daily lessons
floor_area	Area (in m ²) of the floor of the feature of interest (single room or building part)	Integer	01	120
glazed_area	Area (in m ²) of the glazed surface (windows) of the feature of interest (single room or building part)	Integer	01	15
ventilation	Presence of ventilation system in the single room or building part	Codelist: - None - Manual - Electric fan - Air conditioning system - Air purifier - Central ventilation meeting	01	Air conditioning system
occupants ⁵¹	Information about the occupants of the single room or building part		0N	
number	Number of occupants	Integer	1	22
type	Typology of occupants	Codelist: - Kindergartners - Students - Teachers	1	Students

⁵¹ The element "occupants" can be repeated more than once, with different typologies.

This project has received funding from the European Union's

		 Patients Visitors Workers Household dwellers 		
gender	Gender of occupants (per typology)	Codelist: - Female - Male - All genders - Irrelevant	01	All genders
age	Age of occupants (per typology)	Codelist: - under 5 years old - 5-10 - 10-18 - 18-25 - 25-65 - over 65 years old	01	10-18

EDIA

The polygon representing the feature of interest will be composed by an array with vertices having geographical coordinates (longitude, latitude in WGS84) as in the following example (green polygon):

In the GeoJSON Object representing the feature, the spatial information about the polygon will be managed as in the following excerpt (corresponding to the green polygon):

```
{
"type": "FeatureCollection",
"name": "temp",
"crs": { "type": "name", "properties": { "name":
"urn:ogc:def:crs:OGC:1.3:CRS84" } },
"features": [
{ "type": "Feature", "properties": { },
"geometry": { "type": "Polygon", "coordinates": [
[ [ 11.643365834152107, 44.830455040411074 ], [
11.643290387040651, 44.830294443474003 ], [
11.643215296187936, 44.830402191139434 ], [
11.643365834152107, 44.830455040411074 ] ] ] } }
```

Figure 7 - Example of FeatureOfInterest corresponding to a single room

5.1.4 Sensors

In EDIAQI, a "Sensor" is the actual device (with electronic or mechanical components) used to take the measurement, for instance related to air quality or other aspects. Each "Sensor" will be detailed in the "metadata" element (as URL to online document containing technical specifications) and it will be characterised by specific details contained in the element "properties", with external reference to official EIONET vocabularies.

STA element	Description (EDIAQI)	Data type	Multiplici ty	Example
name	Name or code of the sensor that is used to monitor a specific parameter	String	1	Sensirion SPS30
description	Description of the sensor	String	1	PM2.5 Sensor for HVAC and air quality applications SPS30
encodingType	Type of encoding for representing technical details of the sensor	Default = 'application/pdf' ⁵²	1	application/pdf
metadata	Technical details of about the sensor	URI	1	https://sensirion.com/media/documents/B7AAA101/61653FB8 /Sensirion_Particulate_Matter_AppNotes_Specification_State ment.pdf
properties	A JSON Object containing user- annotated properties as key- value pairs	JSON Object	01	

Table 20 Mapping EDIAQI data towards STA data model: "Sensors" entity

⁵² SensorThings API defines two common Sensor metadata encodingTypes. Most sensor manufacturers provide their sensor datasheets in a PDF format. As a result, PDF is a Sensor encodingType supported by SensorThings API. The second Sensor encodingType is SensorML: <u>https://www.ogc.org/standard/sensorml/</u>.

This project has received funding from the European Union's

identifier	Project id for the sensor with the following pattern: - EDIAQI (fixed) - 2-digit code for pilot area (es. FE) - 3-digit code for the sensor	String	1	EDIAQI.FE.001
measurementType	URI of the type of measurement	URL of the EIONET Codelist "measurementType" ⁵³ with the exact type of measurement	1	http://dd.eionet.europa.eu/vocabulary/aq/measurementtype/ automatic
method	URI of the type of method	EIONET Codelist "measurementMethod" ⁵⁴ with the exact type of method	1	http://dd.eionet.europa.eu/vocabulary/aq/measurementmeth od/NDIR
owner	URI of the owner of the sensor	URL	01	https://www.labservice.it/
responsibleParty	Contact details of the organization responsible for the sensor	JSON Object	01	
organizationName	Name of the organization	String	1	Lab Service Analytica srl
website	Website of the organization	String	01	https://www.labservice.it/
telephoneVoice	Telephone voice number of the organization (functional)	String	01	+39051732351
electronicMailAddress	Email of the organization (functional)	String	1	info@labservice.it

⁵³ http://dd.eionet.europa.eu/vocabulary/aq/measurementtype/

⁵⁴ <u>http://dd.eionet.europa.eu/vocabulary/aq/measurementmethod/</u>

This project has received funding from the European Union's

EDIA

Esamples of a "Sensor" can be a Sensorio SPS30 (left) or NetPID monitoring units (right):

Figure 8 - Sensorion SPS30 for PM2.5

Figure 9 - MH-410D NDIR Infrared CO2

5.1.5 ObservedProperties

In EDIAQI, an observed property refers to the single parameter measured, with external reference to official EIONET vocabulary.

STA element	Description (EDIAQI)	Data type	Multiplicity	Example
name	Name or code of the sensor that is used to monitor a specific parameter	String	1	03
definition	Definition of the observed property. For AQ parameters, refer to EIONET Codelist	EIONET Codelist "Pollutant" ⁵⁵	1	http://dd.eionet.europa.eu/vocabulary/aq/pollutant/7
description	Description of the sensor	String	1	Ozone

Table 21 Mapping EDIAQI data towards STA data model: "ObservedProperties" entity

⁵⁵ <u>http://dd.eionet.europa.eu/vocabulary/aq/pollutant/</u>

This project has received funding from the European Union's

5.1.6 Observations

In EDIAQI, an observation is the single resulting quantitative value and its correspondent datetime (expressed in ISO 8601 standard format)⁵⁶.

STA element	Description (EDIAQI)	Data type	Multiplicity	Example
phenomenonTime	In EDIAQI, it corresponds to the period of time or to the exact instant related to the observation of a specific parameter (depending on the nature of the observed property)	TM_Object (ISO 8601) as Time Interval (e.g. for average hourly values) OR TM_Object (ISO 8601) as Time Instant (e.g. for single measurements)	1	2023-11-30T23:00:00Z/2023-12-01T00:00:00Z OR 2023-11-30T23:00:05Z
result	The value of an EDIAQI parameter (ObservedProperty) related to a specific period of time	Double (max 5 decimals)	1	12.34567
resultTime	The time of the Observation's result was generated.	TM_Object (ISO 8601) as Time Instant	1	2023-12-15T00:00:00Z

Table 22 Mapping EDIAQI data towards STA data model: "Observations" entity

⁵⁶ https://www.iso.org/iso-8601-date-and-time-format.html

This project has received funding from the European Union's

5.1.7 DataStreams

In EDIAQI, a datastream is the logical group of observations of a specific observed property together with a specific unit of measurement (referencing the official EIONET vocabulary), made by a specific sensor.

STA element	Description (EDIAQI)	Data type	Multiplicity	Example
name	Name or code of the collection of observations related to the same parameter in a single room or building part.	String	1	Copernico_6A_Ozone
description	Description of the collection of observations	String	1	Ozone at classroom 6A, Istituto Copernico-Carpeggiani in Ferrara
unitOfMeasurement	A JSON Object containing three key-value pairs. The name property presents the full name of the unitOfMeasurement; the symbol property shows the textual form of the unit symbol; and the definition contains the URI defining the unitOfMeasurement.	JSON Object	1	
name	Name of the unit of measure	Codelist from EIONET Vocabulary "Concentration" ⁵⁷	1	Micrograms per cubic meter

Table 23 Mapping EDIAQI data towards STA data model: "DataStreams" entity

⁵⁷ <u>https://dd.eionet.europa.eu/vocabulary/eurostat/unit/</u>

This project has received funding from the European Union's

symbol	Symbol of the unit of measure	Codelist from EIONET Vocabulary "Concentration" ⁵⁸	1	ug.m-3
definition	URI of the unit of measure	URL of the Codelist from EIONET Vocabulary "Concentration" ⁵⁹ with the exact type of concentration	1	http://dd.eionet.europa.eu/vocabulary/uom/concentration/ug.m- 3
observationType	The type of Observation (with unique result type), which is used by the service to encode observations.	Default = "OM_Measurement"	1	http://www.opengis.net/def/observationType/OGC- OM/2.0/OM_Measurement
properties	A JSON Object containing user-annotated properties as key-value pairs	JSON Object	01	
identifier	Project id for the datastream with the following pattern: - EDIAQI (fixed) - 2-digit code for pilot area (es. FE) - 3-digit code for the datastream	String	1	EDIAQI.FE.001

⁵⁹ <u>http://dd.eionet.europa.eu/vocabulary/uom/concentration/</u>

This project has received funding from the European Union's

⁵⁸ https://dd.eionet.europa.eu/vocabulary/eurostat/unit/

5.2 Examples of 'insert' operations

According to the standard SensorThings API, to create an entity in a the "Things" collection, a client SHALL send a HTTP POST request to that collection's URL. The POST body SHALL contain a single valid entity representation. If the target URL for the collection is a navigationLink, the new entity is automatically linked to the entity containing the navigationLink. Upon successful completion, the response SHALL contain a HTTP location header that contains the selfLink of the created entity.

To insert entities in SensorThings API, the commands shall follow the <u>guidelines available in</u> <u>related to integrity constraints</u>.

Scenario	Integrity Constraints
Create a Thing entity	-
Create a Location entity	[*]
Create a Sensor entity	-
Create an ObservedProperty entity	-
Create a FeatureOfInterest entity	-
	SHALL link to a Thing entity.
Create a Datastream entity	SHALL link to a Sensor entity
	SHALL link to an ObservedProperty entity.
	SHALL link to a Datastream entity.
	SHALL link to a FeatureOfInterest entity. If no
Create an Observation entity	link specified, the service SHALL create a
	FeatureOfInterest entity from the content of
	the Location entities.

Table 24 Sensor Things API - Guidelines available related to integrity constraints

[*] Location has not an integrity constraint forcing it to link to a specific Thing as the relation between Location and Things is of the type "many to many". However, the data model described in this document requires a relation linking a Location to the corresponding Thing and this will be present in the following examples.

For the sake of clarity, the following examples describe how to insert each type of STA Entity (Sensors, Things, Locations, etc) separately, but a more efficient approach could be to insert them together in a single call, as described in the <u>guidelines available</u>.

5.2.1 Step 1. Create a Thing entity


```
{
  "@iot.id": 1324,
  "name": "EDIAQI.FE.001 for pilot P1 Ferrara",
  "description": "IAQ unit 001 at Istituto Copernico-Carpeggiani to monitor A, B, C, D, etc",
  "properties": {
    "identifier": "EDIAQI.FE.001",
    "owner": "https://www.labservice.it/",
    "beginTime": "2023-10-05"
  }
}
```

To view the Thing: https://<domain>/FROST-Server/v1.1/Things(1324)

5.2.2 Step 2. Create a Location entity

```
POST https://<domain>/FROST-Server/v1.1/Locations
```

```
{
  "@iot.id": 2475,
  "Things": [{ "@iot.id": 1324 }],
  "name": "Istituto Copernico-Carpeggiani Ferrara, classe 6A",
  "description": "The thing has been installed at the ground floor in classroom 6A of the
high school Istituto Copernico-Carpeggiani",
  "encodingType": "application/vnd.geo+json",
  "location": {
   "type": "Point",
   "coordinates": [11.64273, 44.82996]
  },
  "properties": {
    "identifier": "EDIAQI.FE.001",
    "building": {
      "identifier": "FEIS01200X",
      "address": "Via Pontegradella 25, 44123 Ferrara",
      "country": "IT",
      "use": "Public service",
      "use details": "Public high school"
    },
    "room": {
      "identifier": "6A",
      "level": "3",
      "height": "1.55",
      "d_ceiling": "3.12",
      "d_horizontal": "0.90"
```


To view the Location: https://<domain>/FROST-Server/v1.1/Locations(2475)

5.2.3 Step 3. Create a Sensor entity

POST https://<domain>/FROST-Server/v1.1/Sensors

```
{
  "@iot.id": 3936,
  "name": "Sensirion SPS30",
  "description": "PM2.5 Sensor for HVAC and air quality applications SPS30",
  "encodingType": "application/pdf",
  "metadata":
"https://sensirion.com/media/documents/B7AAA101/61653FB8/Sensirion Particulate Mat
ter_AppNotes_Specification_Statement.pdf",
  "properties": {
    "identifier": "EDIAQI.FE.001",
   "measurementType":
"http://dd.eionet.europa.eu/vocabulary/aq/measurementtype/automatic",
    "method": "http://dd.eionet.europa.eu/vocabulary/aq/measurementmethod/NDIR",
    "owner": "https://www.labservice.it/",
    "responsibleParty ": {
      "organisationName": "Lab Service Analytica srl",
      "website": "https://www.labservice.it/",
      "telephoneVoice": "+39051732351",
      "electronicMailAddress": "info@labservice.it"
    }
  }
```

To view the Sensors: https://<domain>/FROST-Server/v1.1/Sensors(3936)

5.2.4 Step 4. Create an Observed Property entity

POST <u>https://<domain>/FROST-Server/v1.1/ObservedProperties</u>

```
{
  "@iot.id": 6,
  "name": "O3",
  "description": "http://dd.eionet.europa.eu/vocabulary/aq/pollutant/7",
  "definition": "Ozone"
}
```

To view the ObservedProperty: <u>https://<domain>/FROST-</u> <u>Server/v1.1/ObservedProperties(4358)</u>

5.2.5 Step 5. Create a FeatureOfInterest entity

POST https://clossfamily.pdf https://clossfamil

```
{
  "@iot.id": 9935,
  "name": "Class6A",
  "description": "Classroom 6A",
  "encodingType": "application/vnd.geo+json",
  "feature": { ... },
  "properties": { ... }
}
```

To view the FeaturesOfInterest: <u>https://<domain>/FROST-</u>

```
Server/v1.1/FeaturesOfInterest('9935')
```

5.2.6 Step 6. Create a Datastream entity

```
POST <u>https://<domain>/FROST-Server/v1.1/Datastreams</u>
```

```
{
  "@iot.id": 4925,
  "Thing": { "@iot.id": 1324 },
  "Sensor": { "@iot.id": 3936 },
  "ObservedProperty": { "@iot.id": 6 },
  "name": "Copernico 6A Ozone",
  "description": "Ozone at classroom 6A, Istituto Copernico-Carpeggiani in Ferrara",
  "unitOfMeasurement": {
    "name": "Micrograms per cubic meter",
    "symbol": "ug.m-3",
    "definition": "http://dd.eionet.europa.eu/vocabulary/uom/concentration/ug.m-3"
 },
  "observationType": "http://www.opengis.net/def/observationType/OGC-
OM/2.0/OM Measurement",
  "properties": {
    "identifier": "EDIAQI.FE.001"
 }
```

```
To view the Datastream: https://<domain>/FROST-Server/v1.1/Datastreams(4925)
```

5.2.7 Step 7. Create an Observation entity

```
POST <a href="https://comains/FROST-Server/v1.1/Observations">https://comains/FROST-Server/v1.1/Observations</a>
```


{

```
"Datastream": { "@iot.id": 4925 },
"phenomenonTime": "2023-11-30T23:00:00Z/2023-11-30T23:10:00Z",
"result": "12.34567",
"resultTime": "2023-12-01T00:00:00Z"
}
```

To view the Observation: https://comain/FROST-Server/v1.1/Observations(389920465)

What follows is a more efficient approach to inserting bulk group of observations:

https://<domain>/FROST-Server/v1.1/CreateObservations

```
ſ
 {
   "Datastream": { "@iot.id": 4925 },
   "components": [
    "result",
    "phenomenonTime"
   ],
   "dataArray": [
    [
      123,
      "1900-11-23T01:02:03Z"
    ],
     ſ
      456,
      "1900-11-23T04:05:06Z"
     ],
    [
      ...
    1
   1
 },
 {
   "Datastream": { "@iot.id": 7392 },
   "components":
    "result",
    "phenomenonTime"
   ],
   "dataArray": [
     ...
   ]
 }
]
```


EDIA@I

5.3 Other standard data models to be considered

5.3.1 CityGML "Building" class

As aforementioned, different Level Of Details (LOD) may be considered for objects representing a building (see Figure 2 in chapter 4). At LOD3 and LOD4, interior specific elements (spatial objects) can be modelled to represent single rooms, openings, windows, doors, ... with their specific properties.

Figure 10 - Simplified UML Class Diagram for "Building" in CityGML

In future versions of this deliverable (i.e. deliverable D4.7 planned at M24) we will map existing data about pilot buildings in EDIAQI towards the CityGML standard data model.

5.3.2 INSPIRE Directive "Building" data theme

Among the 34 data themes considered by the European Directive 2007/2/CE (aka INSPIRE⁶⁰) the theme "Buildings" may be considered another target data model. The base UML Class Diagram for data representing buildings is the following:

⁶⁰ <u>https://knowledge-base.inspire.ec.europa.eu/index_en</u>

EDIA

Figure 11 - Overview of the Building Base in INSPIRE Technical Guidelines (TG)⁶¹

Indeed, the rooms and building parts may be represented by a solid or a multisurface, according to the various LoDs of CityGML.

Moreover, the components of the building may also be semantically described by specific feature types:

- in LoD2: boundary surfaces (e.g. walls and roof) and installations...
- in LoD3: openings (doors and windows) are added.
- in Lod4: the interior of building (building units, rooms, internal installations) is added.

⁶¹ https://github.com/INSPIRE-MIF/technical-guidelines/tree/main/data/bu

EDIA@I

Figure 12 - CityGML LoD2, LoD3 and LoD4 in INSPIRE "Buildings" TG

6. Activity plan M12 – M24

This deliverable represents the first version of the EDIAQI "Framework and standards for data interoperability". In this version, the aim is to provide a list of standards and technical specifications to implement a common interoperability approach and related technical solutions.

In twelve months after the submission of this deliverable D4.3, version 2 will be released to provide an update about the technology utilised in the project (D4.7). In D4.7, solutions for making EDIAQI data "findable" will be identified considering standards for "discovery metadata" (e.g. Dublin Core ISO15836 or DCAT-AP or others) and software implementing these standards.

The activity plan foreseen in the following tables derives from the analysis of requirements as well as pilots' conditions. Thus, the strategies and the time estimates expressed in this section reflect what is known and what is expected at the time of its creation.

The table displays the timeframe suggested to EDIAQI partners responsible for Pilots and Campaigns for deploying, configuring and testing the main software components enabling a minimum level of technical interoperability.

Table 25 General timeline to deploy, configure and test software components for each EDIAQI pilot site

Software type	Month Software recommended	13	14	15	16	17	18	19	20	21	22	23	24
Base software	PostgreSQLPostGIS												
Software for dynamic data interoperability	- FROST												
Software for interoperable view of web maps	- GeoServer												
Software for interoperable access to IAQ indexes	- GeoServer												
Pilot testing	- QGIS + STA plugin												

The following table proposes a detailed plan for semantic interoperability.

Table 26 Detailed plan for semantic interoperability

Action	Month	13	14	15	16	17	18	19	20	21	22	23	24
Action	Partners involved												
Complete physical mapping between EDIAQI dynamic data from pilots towards SensorThings data model	All T4.3 partners: DEDA (coord), TalTech, THIN, LAS, KNOW, WINGS, ASC, LC												
Updated version of "data glossary" (chapter 3) with details about: - indoor biological parameters - indoor toxicological parameters - lifestyle metadata from questionnaires	All T4.3 partners												
In-depth analysis of existing official vocabularies and ontologies	All T4.3 partners												
Mapping between towards CityGML data model (or INSPIRE "Buildings" data model)	All T4.3 partners												
Updated version D4.3(v1.5)	All T4.3 partners												
Analysis of standards for metadata (FAIR) and software solutions for discovery capabilities	All T4.3 partners												
Specific T4.3 web meetings	All T4.3 partners												
Deliverable D4.7	DEDA												

This project has received funding from the European Union's

Horizon Europe Framework Programme under grant agreement Nº 101057497.

7. Annexes

7.1 Annex 1 – EDIAQI Webinar Training Sessions

As part of the EDIAQI project, a series of webinar training sessions were organised to explore the issues of data interoperability. These sessions comprised four comprehensive lessons conducted between June and October, aiming to enhance participants' understanding of key concepts and practices in the domain of data interoperability. The webinars were designed to cover key concepts, standards, and best practices that govern the harmonious interaction of data in heterogeneous environments. Each lesson provides a structured and cumulative learning experience.

The goal was not only to impart theoretical knowledge but also to empower participants with practical skills that could be directly applied. The timing of the sessions, spanning from June to October, ensured that participants had ample time to absorb and apply the knowledge gained. This approach facilitated a more thorough understanding of the intricacies of data interoperability. The webinar format offered a flexible and accessible learning environment, allowing participants to engage with the material remotely. This accessibility was especially beneficial for project members with diverse schedules and locations, fostering a collaborative learning atmosphere irrespective of geographical constraints. By offering a structured and comprehensive learning experience, these sessions contributed to the project's success by ensuring that team members were well-prepared to understand effective interoperability solutions.

This annex serves as a compass guiding reader through the several and complex resources used and produced during the EDIAQI webinars, giving the ability to navigate these useful materials. Our opinion is that sharing educational materials, links, and bibliographic resources is paramount to cultivating a comprehensive understanding of interoperability. Indeed, this shared knowledge base lays the groundwork for discussions and collaborative exploration, that is instrumental in advancing interoperability knowledge. Offering access to supplementary materials and real-world examples not only enhances the learning experience but also provides practical insights into the application of interoperability concepts.

The training modules was organized in this formative calendar:

- "SensorThings API standard and FROST open-source server solution", held by the Deda Next team on Wednesday 21st of June 2023
- "SensorThings API standard and FROST open-source server solution for interoperable dynamic data" held by the Deda Next team on Friday 21st of July 2023
- "Examples of data visualization of dynamic data from SensorThings API (web and desktop)" held by the Deda Next team on Friday 29th of September 2023
- "Modelling data about "buildings (CityGML standard)" held by the Deda Next team on Friday 27th of October 2023

For each session, in this chapter, the agenda, a brief description of the main topics discussed, and the provided materials are available.

Session	Description	Agenda
SensorThings API	The SensorThings API (aka STA) is a standard	 Introduction
standard and	specification published by Open Geospatial	 Examples of data
FROST open-source	Consortium for providing an open and	interoperability
server solution –	unified way to interconnect Internet of	 SensorThings API (STA)
21/6/23	Things devices, data, and applications over	standard
	the Web. STA is open, vendor-neutral, data-	 STA requests
	neutral, and built on Web protocols and the	 FROST open-source STA
	OGC Sensor Web Enablement standards,	server
	applying an easy-to-use REST-like style.	 STA+ extension for
	The result is to provide a uniform way to	citizen science
	expose the full potential of the IoT.	 INSPIRE Directive
		 Q&A round table

7.1.1 Session I

Useful materials

Slide used during the training session:

- Introduction
- Data Interoperability Examples
- <u>Sensor Things</u>

This project has received funding from the European Union's Horizon Europe Framework Programme under grant agreement № 101057497.

EDIA

- Endpoint and STA requests
- <u>Frost</u>
- <u>STAplus extension</u>
- <u>INSPIRE</u>

Training session video recording:

- <u>Part 1</u>
- <u>Part 2</u>

7.1.2 Session II

Session	Description	Agenda
SensorThings API	FROST (FRaunhofer Opensource	 Welcome and wrap-up
standard and	SensorThings-Server) is the first complete,	of the first session
FROST open-source	open-source official reference	 Introduction to FROST
server solution for	implementation of the OGC SensorThings	open-source project
interoperable	API. Against the background of the	 Deployment of FROST in
dynamic data —	requirements from numerous applications in	Tomcat (real example in
21/07/23	the mega trend topic "Internet of Things",	Ferrara, Italy)
	the Fraunhofer IOSB decided to develop a	 Deployment of FROST in
	server for the OGC SensorThings API	Docker (how-to
	standard. The objective was to achieve high	example)
	performance with low resource	 Apache NiFi for ingesting
	consumption and an openness that	data in FROST (real
	facilitates usability both in the research	example in Ferrara, Italy)
	environment and in commercial applications	 Proposal for common
	(source).	semantics of IAQ data
	Meanwhile, the OGC SensorThings	and buildings' properties
	API is recommended by the	 Feedback about
	European Commission as "Good	semantics and
	Practice" for the deployment of	discussion with
	measurement data according to the	 sensors' providers
	INSPIRE guidelines: "OGC	(LAS, THINNECT,
		WINGS)

This project has received funding from the European Union's Horizon Europe Framework Programme under grant agreement Nº 101057497.

SensorThings API as an INSPIRE	 EDIAQI Data
download service"	Platform developer
	(KNOW-CENTRE)

Useful materials

Slide used during the training session:

- Introduction
- FROST Overview
- Frost Deployment
- Frost Docker deployment
- NiFi ingestion
- <u>Semantics</u>
- <u>Q&A</u>

Training session video recording:

- <u>Part 1</u>
- <u>Part 2</u>

7.1.3 Session III

Session	Description	Agenda
Examples of data	Data visualization is the practice of designing	 Intro and recap
visualization of	and creating easy-to-communicate and easy-	 Examples of Air Quality
dynamic data from	to-understand graphic or visual	data on the web
SensorThings API	representations of a large amount of	 Javascript-based web
(web and desktop)	complex quantitative and qualitative data	dashboards for
- 29/09/23	and information with the help of static,	SensorThings API
	dynamic or interactive visual items.	 Data storytelling in
		EDIAQI
	During the webinar, practical examples of	 Python-based QGIS
	web and desktop applications have been	plugin for SensorThings
	presented, using open-source Javascript	ΑΡΙ

This project has received funding from the European Union's Horizon Europe Framework Programme under grant agreement № 101057497.

libraries (for web) and Python-based plugin	
(for QGIS desktop).	

Useful materials

Slide used during the training session:

- Introduction
- JS web dashboards for STA
- Python QGIS plugin STA
- <u>Q&A</u>

Training session video recording:

- <u>Part 1</u>
- <u>Part 2</u>

7.1.4 Session IV

Session	Description	Agenda
Modelling data	The CityGML standard defines a conceptual	 Intro & recap
about "buildings"	model and exchange format for the	 Intro to CityGML
(CityGML standard)	representation, storage and exchange of	standard
- 27/10/23	virtual 3D city models. It facilitates the	 Software for CityGML
	integration of urban geodata for a variety of	 3DCityDb
	applications for Smart Cities and Urban	implementation and
	Digital Twins.	software
	During the webinar, introduction to CityGML	 Conclusions
	and practical information about software	
	and tools have been provided by Dr. Giorgio	
	Agugiaro (TU Delft) to stimulate EDIAQI	
	partners about approaches for modelling	
	pilot buildings in a harmonised and standard	
	way, collect their properties and link	
	external references to dynamic data (via	
	SensorThings API).	

EDIA

Useful materials

Slide used during the training session:

- Introduction
- <u>City GML</u>
- <u>City GML Software</u>
- <u>3D City DB</u>
- <u>3D City DB Tools QGIS</u>

Training session video recording:

• <u>Part 1</u>

Work Package 4 Pilots, data and campaigns Version: Final

This project has received funding from the European Union's Horizon Europe Framework Programme under grant agreement № 101057497.